Banach algebra - significado y definición. Qué es Banach algebra
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Banach algebra - definición

PARTICULAR KIND OF ALGEBRAIC STRUCTURE
Banach algebras; Spectrum of a commutative Banach algebra; Commutative Banach algebra; B-algebra; Banach *-algebra; Banach ring; Structure space; Spectral mapping theorem; Character space; Unital Banach algebra; Algebra norm; Involutive Banach algebra; Spectrum of an abelian Banach algebra

Banach algebra         
<mathematics> An algebra in which the vector space is a Banach space. (1997-02-25)
Banach algebra         
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy
Amenable Banach algebra         
Amenable banach algebra; Amenable algebra
In mathematics, specifically in functional analysis, a Banach algebra, A, is amenable if all bounded derivations from A into dual Banach A-bimodules are inner (that is of the form a\mapsto a.x-x.

Wikipedia

Banach algebra

In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A {\displaystyle A} over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy

This ensures that the multiplication operation is continuous.

A Banach algebra is called unital if it has an identity element for the multiplication whose norm is 1 , {\displaystyle 1,} and commutative if its multiplication is commutative. Any Banach algebra A {\displaystyle A} (whether it has an identity element or not) can be embedded isometrically into a unital Banach algebra A e {\displaystyle A_{e}} so as to form a closed ideal of A e {\displaystyle A_{e}} . Often one assumes a priori that the algebra under consideration is unital: for one can develop much of the theory by considering A e {\displaystyle A_{e}} and then applying the outcome in the original algebra. However, this is not the case all the time. For example, one cannot define all the trigonometric functions in a Banach algebra without identity.

The theory of real Banach algebras can be very different from the theory of complex Banach algebras. For example, the spectrum of an element of a nontrivial complex Banach algebra can never be empty, whereas in a real Banach algebra it could be empty for some elements.

Banach algebras can also be defined over fields of p {\displaystyle p} -adic numbers. This is part of p {\displaystyle p} -adic analysis.